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Abstract

Generative adversarial network (GAN), an aspiring area in the field of deep learning,
has made it possible to generate realistic images of human faces, change the style of an
image and generate voice and texts. Generation of realistic images using GANs is an
interesting research area and in this thesis that is the main concern.

Textures are an important part in creating 3D models and face textures are integral in
creating 3D human models. Generating face textures from 3D scans of faces is already
a known method. But due to its complexity, an endeavour is made in this thesis to
leverage the state of the art generative network to generate good quality textures that
can be efficiently fitted on an available 3D face model. Developing a method to perform
selective modifications on generated face textures and developing an efficient method of
fitting a texture to a 3D model is discussed in this thesis as well.

As already mentioned generation of textures is not the only concern here. To assure
the diversity of the generated images a face attribute predictor is trained that assures
the diversity of generated images. It is shown that method like regression can prove very
efficient in identifying and changing specific facial features without changing any other
facial properties. Two new indices, the face index and intercanthal index, are proposed
that helps in an accurate geometrical analysis of the generated faces and textures. Post
texture generation, it is shown how efficiently the textures can be fitted on a 3D model
even without any UV map (2D mesh of a 3D model) information (like the different
co-ordinates of the eyes, lips, nose and other facial features). It is shown how a simple
and efficient Support Vector Machine (SVM) technique can be used to align and fit a
2D texture onto a 3D model efficiently. In this thesis, effect of texture augmentations
in training generative networks is also discussed.

Index Terms- generative adversarial networks, 2D face textures, texture modification,
UV mapping, texture rectification.
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Introduction

1.1 Motivation

Synthetic data is a crucial asset in the field of machine learning. In the field of au-
tonomous driving the use of synthetic or artificial data is significant. An autonomous
driving system needs to be trained using a simulation environment because using real
data is not always a practical solution. The simulation environment consists of buildings,
cars, signal posts, pedestrians, etc. In order to train a system to be robust and reliable,
it needs to be trained with a lot of variations, so that the system is prepared to face
any kind of situation. One of the important components in the simulation environment
are the pedestrians and creating these pedestrians involves 3D models and 2D textures
[Figure: [L.IJ(a)].

Creating 2D textures e.g. for faces using the conventional methods of obtaining 3D
scans and extracting texture using some complex mathematical process leads to inferior
quality textures [Figure: [L.I(b)]. And in order to bring variations there should be more
3D scans and hence the entire process is inefficient and time consuming. Textures are
also manually designed by designers. Although these manually designed textures are of
good quality, it is still very time consuming.

Based on the above-mentioned facts an endeavour is made in this thesis to automate
this texture generation process for pedestrian modelling in simulation environments. By
automating this process more high-quality textures with variations can be generated
in significantly less amount of time, than that could be done using the conventional
methods.

This approach might also prove beneficial for designing computer games. The use
of human figures in computer games is extensive and if this texture generation can
be automated then it will be possible to generate different figures in significantly less
amount of time. Another important application is training of face recognition systems.
Generating face textures with a lot of variations which could then be wrapped around
a 3D model to create a face [Figure: [1.1ja)], will help in training the face recognition
system, making the surveillance system more robust and reliable and will simultaneously
reduce the effort of collecting photographs of different faces required for the training.
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Figure 1.1: (a)Creating a face model using 3D model and 2D texture generated using a
generative network; (b)3D scan and textures generated from 3D scans.

Automating the generation of textures is possible leveraging the recent development
in the field of deep learning in the form of generative networks (explained in Background
chapter). With the help of generative networks, it is possible to create high quality
textures with substantial amount of variations and that too without obtaining any 3D
scans or doing any manual design.

Hence, this thesis provides a proof of concept on how this generation, creating vari-
ations and fitting of 2D textures could be automated.

1.2 Problem Description

The basic idea is demonstrated in figure (a) where a model of a face is created using
a 3D model and 2D texture. The purpose of the thesis is generation of 2D textures for
3D modelling of the pedestrian models (human figures) using deep learning techniques.
Here the main concern has been the generation and fitting of face textures. This involves
the 2D face texture generation, performing quality checks to assess the realism of the
generated textures, making sure that the generated textures are quite diverse in nature,
wrapping of the 2D face textures on a 3D face model, assessing the quality of the face
after the 2D texture being wrapped on it and in case of distortions after the wrapping
step, finding a solution for it. The figure gives an overview for the workflow of the
thesis.

1.3 Contribution

The main contributions in the thesis can be summarized in the following points:

e The effect of data augmentation while training GAN architecture is analysed.
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e Variational analysis is performed on the generated textures to make sure the gen-
erated textures are diverse in nature.

e Degree of realism is calculated for the assessment of the generated textures. Two
new metrics are introduced apart from the conventional Frechet Inception Distance
(FID) score. The two new metrics are Intercanthal Index and Face Index which
are described in the Methodology chapter.

e StyleGAN’s style-mixing method is implemented on the generated 2D face textures
to produce random variations on the textures.

e The concept of linear regression and vector orthogonalization is used to implement
conditional variation on the generated textures.

e The generated 2D face textures are then fitted on the 3D model using the concept
of UV mapping.

e The texture wrapped 3D model is analysed for distortions or irregularities.

e Experiments are performed to separate bad textures (those that causes distortions
after wrapping on the 3D model) and acceptable textures.

e Support Vector machine (SVM) is implemented to classify acceptable textures and
bad textures. And last but not the least, the bad textures are converted to the
acceptable ones leveraging the SVM implementation that is described in details in
the Methodology chapter.

1.4 Structure

The thesis is divided into the following sections:

e The Background chapter explains the different concepts that are used for the suc-
cessful completion of the thesis. The topics that are discussed are Linear Regres-
sion, Support Vector Machine, Convolutional Neural Networks (CNN), Generative
Networks, Support Vector Machines (SVM), and last but not the least UV Map-
pIng.

e The Related Work chapter tries to give an overview of the different researches that
have been done, which are relevant to the thesis. Related works in the field of
GAN architecture, texture generation and generated image modifications.

e The Methodology chapter describes the main contributions of the thesis in details,
the ones that are being described in the Contribution section above.

e The Results and Discussion chapter summarizes the different evaluations that has
been performed during the thesis, like the variational analysis of the generated
textures, degree of realism assessment, effect of data augmentation during GAN
training, etc. The above mentioned topics in the Contribution section is actually
divided between the Methodology and Results and Discussion chapter, where the
Methodology chapter describes the methods that have been implemented and the
Results and Discussion chapter summarizes the different outcomes of the methods
that are being implemented. It keeps the thesis structure clean and tidy.

e Last but not the least the Conclusion chapter gives an overview of the entire thesis
and the final outcome and also throws some light on the possible future areas of
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Background

The purpose of this chapter is to explain the different concepts that is used throughout
this thesis, for better understanding of this thesis. This chapter is divided into six parts.

e Section 2.1 explains Linear Regression, which is basic machine learning.

e In section 2.2 the concept of Support Vector Machine is explained.

e Section 2.3 explains Convolutional Neural Networks (CNN) which is an itergral
part of deep learning.

e Section 2.4 and 2.5 explains Generative Networks in General that is the building
block of the thesis.

e Section 2.6 describes the State of the art architecture for GAN i.e. the StyleGAN
architecture.

e In section 2.7 face landmark detection is discussed using dlib face landmark de-
tector.

e Section 2.8 explains the process of fitting of a 2D texture on a 3D model.

2.1 Linear Regression

One of the very basic concept that is used in the thesis is Linear Regression for the
conditional modification of fake images, which is explained in the Own Work chapter.
Linear regression is a linear approach that models the relationship between dependent
and independent variables. Given a data y;, z;1, ..., £;p, Where y is the dependent variable
and x;1, ..., T is a p dimensional vector, which is the independent variable. The variable
X which is a p dimensional vector is called the regressor variable. The model takes the
form:
Y; = bo + bl$i1 + ...+ bpl'ip = Xin (21)

Here,
e y is response vector of length n.

e X is an n x (p+ 1) matrix of independent variables.
e bisa (p+ 1) vector of regression coefficients.
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This kind of linear regression i.e. represented by [Eq: , is known as multiple linear
regression, also known as multivariate linear regression.

The image [Figure: gives a geometrical interpretation of Linear Regression. The
basic idea of Linear Regression is about fitting a straight line through the data-points.

Line Fit: y=b0 + bl .X

Figure 2.1: Scatter plot for linear regression. The best values of b approximates the best fit
line.

2.2 Support Vector Machine

A Support Vector Machine (SVM) is a discriminative classifier that is defined by separat-
ing boundary or hyperplane. Given a labelled training data, SVM outputs a boundary,
which is HO in figure 2.2 which categorizes new examples. The name support vector
machine comes from the support vectors that lie closest to the decision surface(or hy-
perplane), the red and the green dots that lie on the lines H1 and H2 |Figure: [2.2]
are the support vectors and these are the data-points that are most difficult to classify.
Another interpretation for SVM can be that it maximizes the margin around the sep-
arating hyperplane. The d in figure is the margin of separation, i.e. the separation
between the hyperplane and the support vector for a given weight vector w and bias b.
The input to the SVM is a set of input/output training pair samples (the input sample
features x1, s, ..., £3 and the output result y ). The SVM outputs a set of weights w, one
for each feature, whose linear combination predicts the value of y. From figure 2.2 the
separating hyperplane is H0 defined by the equation w.z + b = 0, where w is the weight
vector, x is the input vector and b is the bias. In order to maximize the margin, i.e. the
distance 2d, ||w|| has to be minimized with the condition that there are no datapoints

between H1 and H2 [Equation: [2.2] [2.3]:

;. w +b > +1wheny; = +1 (2.2)

riw~+b< —lwheny, = —1 (2.3)
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w.x+b=+1

w.x+b=0

w.x+b=-1

Figure 2.2: Support Vector Machine overview

2.3 Convolutional Neural Networks (CNIN)

A CNN is a deep learning algorithm that takes in an input image and assign various
aspects/objects in the image and is capable of differentiating an image based on some
predefined classes. A CNN gets its name from the type of hidden layers present in
it. A CNN consists of convolutional layers, pooling layers, fully connected layers, and

normalization layers.
To mention a little bit of history, the very first CNN architecture was LeNet, which

was a pioneering work by Yann LeCun (1988) [LBBH9S|, which helped to gear up the
field of deep learning. Below is an image that gives an intuitive idea about how the

CNN architecture works.

Convolution+ReLU Pooling iCOIlVOlUﬁOH*'ReLU Pooling Fully Connected
Layer

—4 " [ Dog (0.01)
1
13

e T | [ s O e =~ [ Cat (0.04)
- Il- ™ Bzat (0.94)
| 141 4 - !?E _____ -~ Bird (0.01)

-~~-D . I P e i o -
—

LeNet Architecture

Figure 2.3: A simple CNN architecture [LBBH9S|

Input Image

_::i

This CNN architecture|Fig: [2.3] classifies the image into 4 classes namely the dog,
cat, boat and bird. It is evident from the picture that boat gets the highest probability.
Though just saying it seems to be a lot more intuitive, there is some serious mathematics
that goes behind such architectures. There are 4 main operations that are being carried
out in the CNN architecture:

1. Convolution.
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2. Activation Function (Non Linearity like ReLLU).
3. Pooling or Subsampling.
4. Classification (Fully Connected Layer)

These operations are basic to all classes of neural networks and hence understanding
them is key to understanding the Thesis properly.

Now we all know that image is a matrix of pixel values. Channel of a image is
referred to as the number of colour elements that the image has. An image from a
standard digital camera will have 3 channels namely Red, Green and Blue. A gray
scale image is an image with only a single colour channel. The pixel values are between
0 and 255. Hence these channels are also known as the 8 bit colour channels.

2.3.1 Convlution Operation

1 0
0 1
1 0
0 1
1 1

B
al
-
1 |
0

O I A 11
| I (A O I O P[0
/N A I % 0|1
| L (O O I O I P[0
/O I O O 0|1

S I I
O
S I I
0 [ 1] 1
SO

5x§  Image Convolution operation Convolution operation
performed on the image performed on the image
using the 3x3 Filter matrix. using the 3x3 Filter matrix.
1 1 1 4 4 3
1 0 1
0 1 1
3x3 Filter Convolved Feature Convolved Feature

Figure 2.4: (Left to right) Explanation of the convolution operation.

ConvNets (convolution network) derive their name from convolutional operator. The
basic purpose of the convolution is extracting features from the input image. Convolu-
tion preserves the spatial relationship between pixels by learning image features using
small squares of input data.

As it is already mentioned that image is a matrix values, let us take an image matrix
of 5x5 image pixel values are only 0 and 1 (first figure from top left )[Figure: [2.4].

The small 3x3 matrix (first figure from bottom left) [Figure: [2.4] is also called the
Kernel or Filter. The filter is slid over the 5x5 image matrix and multiplication is
performed with the elements in the 3x3 matrix with elements of the 5x5 image matrix,
over the block on which the filter is superimposed as marked by the yellow block (top
middle from left)|Figure: [2.4]. The multiplication is followed by addition of the results
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of multiplication of each individual cell in the block. Hence convolution is a purely linear
operation. The convolution operation can be summarized by the following equation:

Glm,n] = (f+b)m.n] =D > hlj, kI flm = j.n = K] (2.4)

here f is the input image and h is the kernel. The indices of the rows and columns
of the resultant matrix are marked with m and n respectively. Here in figure [2.4] it is
evident that the kernel has moved one distance, and this is known as the stride. Here
stride is 1. The matrix formed after convolution is known as the Feature Map (bottom
middle figure from left)[Figure: 2.4]. The number of feature maps obtained depends on
the number of filters used for convolution. It is important to mention the filters acts as
feature detectors for the original input image. The spatial size of the output volume of
the feature maps can be calculated by the following formula:

W —-K+2p
S

Feature map volume = +1 (2.5)

where W is the input feature (image) volume size (e.g. W = 5 from figure [2.4), the
kernel field size of the convolutional layer neurons is denoted by K, S denotes the stride
that is applied (in the above case 1) and the amount of zero padding if used on the
border is denoted by p.

2.3.2 Non-linearity /Activation Function

The output of a neuron is basically a liner operation that can be summarized by the
formula Output = (weight -input)+ constant, where Output is the neuron output, input
is the input to the neuron, weight defines the strength of the connection between input
and output neuron and the constant is also known as the bias term in machine learning.
The output can range between —oo to +00. The neuron is unaware of the bounds of
the value. Hence in order to decide whether the neuron will be activated or not, the
purpose of the activation function comes into play, where the output of the neuron is
bound between certain values and at the same time the activation function introduces
non-linearity to the model. There are many different kinds of activation functions like
the Step, Sigmoid, Tanh, ReLU, etc. Among them ReLU activation function is one of
the most commonly used.

The ReLU or Rectified Linear Unit[Agal§] is an activation function. Since most of
the data in real world is non linear in nature, it is the job of the activation function to
introduce non-linearity in the model, otherwise it is just a simple linear operation (i.e
convolution). ReLLU can be described as A(x) = max(0,z), where A defines the ReLU
operation and x is the neuron output. The ReLU is not bound, though it is a good
approximator. The range of ReLU is [0,00]. ReLU is an element wise operation and
removes all the non zero values from the convoluted matrix or feature map and in doing
so technically it removes sharp edges from the convoluted image.
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2.3.3 Pooling or Subsampling operation

Pooling is also known as subsampling /downsampling or spatial pooling. Spatial pooling
can be different types: max, average, etc.

In case of max pooling a spatial neighbourhood (e.g 2x2 ) window is defined and
the largest element from the rectified feature map within that window is taken. Instead
of taking the largest element, the average of all the elements in that window can be
considered, which in that case will be known as average pooling. An example of max
pooling operation with a spatial window of 2x2 on a rectified feature map is shown
below:

ANCT T T 2[4
5 b 1 8 b 8
3 2 1 0 Max pool with > 3 4
T | 2 | 3 | & | oo
N\
y IV

Rectified Feture Map

Figure 2.5: Max Pooling operation

We slide the window 2x2 by 2 cells and take the maximum value in each region. The
Max Pooling serves some important functions:

1. As it is evident from figure that it reduces the dimensionality of the rectified
feature map. Hence it makes input more manageable.

2. Reduces the number of parameters and computations and in a way controls over-

fitting.

Makes the network invariant to small transformations and distortions.

4. Makes the network scale invariant. This is very useful because in real life we may
have the image of same thing but with different scales.

b

2.3.4 Fully Connected Layer

The Fully Connected layer is the classical neural network architecture, in which all
neurons connect to all neurons in the next layer.

The rectified feature maps i.e the outputs from the Convolution and pooling layers
serves as high-level features of the input image and the fully connected layer use these
features for classifying the input image into various classes.

2.3.5 Training the network using backpropagation

The overall training process of the CNN can be summarized as follows:

10
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e Step 1: First of all we initialize all the filters with random Gaussian values. It is
advised that the initialization should not be done with all zeros.

e Step 2: The input to the network is training image of size NxN, that goes
through all the convolution, pooling and fully connected layers and finds out the
output probabilities for each class. (E.g.: In our above example we have 4 classes
and we can think of an output such as [0.2,0.3,0.4,0.1]). Since the filter weights
are randomly assigned, for the 1st training example, output probabilities are also
random.

e Step 3: The error is calculated as follows:

T .
_,(Predicted,;, — Actual,;,)?
Total Error(loss) = \/Zl:l( reqrere T/p ctualyy) (2.6)

Here the mean squared error(MSE) loss has been used for the example where T is
the number of classes. Here Predicted,, is the output predicted or calculated by
the network and Actual,, is the actual reference output provided beforehand.

e Step 4 : The next step is to reduce the loss by performing optimization on the
loss function. This is done using the backpropagation method. The backprop-
agation method is is used to calculate the gradients of the loss function w.r.t the
network parameters and then uses gradient descent to update all the parameter
values to minimize the loss.

— The weights are adjusted proportionally to their error contribution.

— When the same input image is again fed to the network then output may
become [0.1,0.1,0.7,0.1]. This clearly shows that the output indicating to a
particular class.

— This proves that the network has learned to classify something. And this
process continues until and unless we are satisfied with the loss minimization.

2.4 General Overview of Generative models

Generative models are a special branch of machine learning models that are used to
generate data. In other words, generative models can generate data that we feed them
as training data.

The different types of generative models are:

e Autoencoders: An autoencoder is a type of model that is used to learn low level
representation or embeddings of the training data. It is generally used to mimic
the input data to the output. The autoencoder maily consists of 4 parts namely the
encoder, bottleneck, decoder and reconstruction loss. The encoder model
helps in learning the lower dimensional representation of the input data. The
bottleneck is the layer that contains the compressed representation. The decoder

11
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is the network that helps in reconstruction of the original data from the compressed
one and the reconstruction loss is the method that gives the intuition of how well
the autoencoder is performing. The main benefit of an autoencoder network is
dimensionality reduction. There are different variations of autoencoders present
like the variational autoencoders|KW19|. A variational autoencoder is a type of
autoencoder whose training is regularized to avoid overfitting and to make sure
that the latent space or the bottleneck layer representation has good properties
that enable generative process which means new content can be generated which
was not possible in case of a simple autoencoder.

|
! |
! |
Nottlenec :
|

Latent Code
>~
Output Layer

Input Layer
S

Figure 2.6: Schema of basic Autoencoder. The Input Layer represents training data.
Latent Code represents the intermediate vector or the embedding of the input X. The En-
coder network maps the input x to intermediate state Latent Code and the Decoder network
maps Latent Code to X'.

e Generative Adversarial Networks (GANs): The GAN architecture has a
generator model ¢(x/h) to map the intermediate state of h represented in figure
to the input space X. And there is a discriminative model p(y/x), which tries
to associate an input instance = to a yes/no binary answer y, about whether the
generator model generated the input or was a genuine sample from the dataset we
were training on. Some of the notable GAN architectures are the DCGAN|rad],
PROGANI|KALLI7], StyleGAN|KLAIS8|. The workflow is represented by figure
2.7

e Auto-regressive models (AR): Autoregressive models predicts the future be-
haviour based on the past behaviour.
Autoregressive models like PixelRNN|[vdOKK16|, trains a network that models
the conditional distribution of each and every individual pixel, given the previous
pixel. In AR model, the value of the outcome variable Y at some instance of time
t is directly related to the predictor variable X. The difference between simple
linear regression and AR models is that Y is dependent on X and previous values
for Y.

12
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2.5 Generative Networks

After the elaborate introduction of CNN, this section will generally involve the ex-
planation of Generative Networks. Till date there has been tremendous improvement
in the field of discriminative models, that generally map high dimensional inputs to
class labels. These successes is mainly based on the backpropagation and dropout al-
gorithms, using piece-wise linear units which have a particularly well behaved gradient.
Deep generative networks have had a less impact, because of the difficulty of approxi-
mating many intractable probabilistic computations that arise in maximum likelihood
estimation and related strategies, and due to the difficulty of leveraging the benefits of
piece-wise linear units in the generative context. This problem was addressed by lan
Goodfellow and his team in the year 2014, by the introduction of Generative Adversarial
Networks|GPAM™14].

2.5.1 Generative Adversarial Network (GAN)

Generative vs. Discriminative Algorithms

To understand GAN architecture it is very important to understand the difference be-
tween Generative and Discriminative algorithms.

Discriminative algorithms tries to map a high dimensional input to a class. Hence
basically it is solving a classification problem. In mathematical terms it can be repre-
sented as p(y|z). Here y is the class variable and x is the feature variable. For example
given the properties of an email what is the probability that the email is spam or not.

The question that the generative model tries to answer, is that assuming the email is
spam, how likely are the features? While discrminative models care about the relation
between x and y, generative models care about how to get x.

The GAN Framework

In the GAN architecture there are two CNNs competing against one another. One is
known as the generator and the other is known as the discriminator. In simple
language, the generator generates new data instances while the discriminator evaluates
them for authenticity. The discriminator decides whether the data instances fed to it is
sampled from the real data or generated by the generator.

The discriminator and generator are represented by 2 functions (in this case neural
networks) that are both differentiable w.r.t their parameters and input. The discrimi-
nator takes input z(from the real data) and it’s parameters are ©P. The generator is
defined as G and it takes input 2 (array of random numbers) and it takes ©¢ as it’s
parameters.

Both D the discriminator and G the generator have cost functions that are defined
w.r.t their parameters. The D minimizes JP(0Y ©P) by controlling ©F and the G
minimizes J¢(©Y ©P) by controlling only ©¢. Here J() is the cost function or loss
function used to optimize the generator and the discriminator network.
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2. Background

As the cost functions depends on each others parameters, this scenario represents
more of a game than a optimization problem. The solution of a game is finding the
NASH equilibrium, which is a tuple (©7,0%), where ©% is the local minimum for G
parameters and ©F is the local minimum for D parameters.

D(x) tries D tries to make
to be near 1 D(G(2)) near 0,

G tries to make

D(G(2)) near 1
Differentiable
function D
D
x sampled
from data x sampled from
model

Differentiable
function G

Input noise z

Figure 2.7: The GAN framework represents two adversaries namely Discriminator (D) and
Generator(G). Typically D and G is represented by deep neural networks. There are 2 scenarios
in this game play. Firstly the D is fed with real training sample x and D returns the probability
that it’s output is real rather than fake. The goal of D is to make D(zx) close to 1. Secondly,
G is fed an array of random numbers z that may be sampled from a Gaussian distribution. D
is then fed with G(z) and here both D and G works together. D tries to make D(G(z)) close
to 0 while G tries to make the same quantity close to 1.

Cost function: D and G play the following two-player minimax game with value
function V(G, D):

mingmarpV (G, D) = Yapa@ 109D (2)] + 3.np. (1) [log(1 — D(G(2))] (2.7)

Here pgaia(x) is the data distribution from which the original data is sampled and p,(z)
is the distribution from which the latent vector (noise) is sampled that is fed to the
generator GG. x is the original data or the image in this case and z is the latent or noise
vector that is fed to the generator.
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ng;l—Z[logD(x(")) +log(1-D (G(z(i))))]

Real Image x =
"8 Discriminator D Cost
—®
Z~ N(0,1)
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Generator [~ v lz log(D(G(z%)))
g m g
0 1

Figure 2.8: GAN loss function |GPAM™14]. D() is the discriminator, G() is the generator,
m are the total number of samples, x and z is the real image and the latent vector respectively.

2.6 StyleGAN architecture

2.6.1 State of the Art GAN Model (StyleGAN)

The GAN model that is used for this thesis is the StyleGAN architecture[KLA1§|. Until
now most of the improvements to the GAN network has been done on Discriminator
models. But the Style Generative Adversarial Network, or StyleGAN in short, is an
extension to the GAN architecture that proposes a new generator architecture. The
architecture includes a fully connected mapping network, to map the noise vector to an
intermediate latent space. The intermediate latent space is used to control style at each
point in the generator model, and the introduction to noise as a source of variation at
each point in the generator model.
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Figure 2.9: Overview of the StyleGAN network

Style-based generator

Traditionally the latent code i.e. the noise vector is directly applied to the input layer.
In case of StyleGAN, the entire input layer is omitted and instead starts from a learned
constant [Figure: . Given a latent code z in the input latent space Z, a fully
connected mapping network (non-linear in nature) f : Z — W first produces w € W.
The dimensionality of the latent code z and the dimensionality of the latent space w is
the same. The mapping network f is 8-layer fully connected network.

The A represents learned affine transformation. The learned affine transformation
transforms w to styles y = (ys, yp), that controls the AdaIN operation|[KLAIS, [HB17].
AdalN refers to "Adaptive Instance Normalization” and it is defined as:

r; — pu(z;)

AdaIN(z;,y) = Ysyi o(z2)

+ Ybsi (28>

where x; refers to feature map, u(x;) is the mean of z; and o(x;) is the standard deviation
of x;. x; is normalized separately and then biased and scaled using the learned affine
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transformations performed in block A. Hence the dimensionality of y is twice the number
of feature maps on that layer.

Last but not the least, the generator is provided with explicit noise inputs, repre-
sented by block B. These are single-channel images consisting of uncorrelated Gaussian
noise, and a dedicated noise image is fed to each layer of the synthesis network. The
noise image is broadcasted to all the feature maps using learned per feature scaling
factors and then added to the output of the corresponding convolution.

Properties of Style-based generator

e The generator architecture makes it possible to control the image synthesis via a
scale-specific modifications to the styles.

e A concept of mixing reqularization is employed where a given set of images is
generated using two latent codes z; and 29 and as a consequence there are w; and
wo that control the styles. This technique prevents the network from assuming
that adjacent styles are correlated.

e Stochasticity in an image refers to the placement of hairs, skin pores, etc. This
stochasiticity is achieved by adding per pixel noise after each convolution, that is
evident from figure 2.9 In the figure that is represented by block B.

e The changes in stochastic variation does not have any global effects. The style
affects the entire image. Global effects like pose, lighting, etc are completely
controlled by the styles, whereas the noise is added independently of each other.
If the network would have tried to control the global effects using the noise, then
that would be penalized by the discriminator.

e One of the most important concept that has been implemented in the StyleGAN is
the truncation trick in w. Here the generator truncates the intermediate vector w,
to keep it close to the average intermediate vector to avoid generating poor images.
The concept is quite simple, instead of using the intermediate vector directly, w is
transformed to

Wnew = Wavg + Zb(w - wavg) (29)
where 1 defines the standard deviation, i.e how far the generated image can be
from the average image. wg, is produced by selecting many inputs and then

taking their intermediate vector using the mapping network and then taking their
average.

Loss function

The loss function that is used for the purpose of StyleGAN is the Wasserstein Loss|[ACB17] |
The Wasserstein Distance (also known as the Earth Mover Distance) is actually the min-
imum cost of transporting mass to convert a data distribution ¢ to p. The Wasserstein

17



2. Background

distance is defined as

W(P,, Py) = supBuvp, [f(2)] = Eanpy [ f(2)] (2.10)

where,

f is 1-Lipschitz function, such that |f(z1) — f(z2)] < |x1 — 22
A <1

sup — > Least upper bound.

P, and Py are two different probability distributions.

The figure shows the WGAN loss function. Compared to the original GAN algo-
rithm, the WGAN undertakes the following changes:

e After every gradient update on the Discriminator function, the weights are clamped
to a small fixed range [-c,c|.

e Use of a new loss function derived from the Wasserstein distance where there is no
more logarithm term. The discriminator model does not act as a critic anymore
but acts as an helper for estimating the Wasserstein metric between real and
generated data distribution.

I, . 1 .
m%;mW%;;m@@w

Real Image x

o Discriminator f Cost
—®
Z~ N(0,1)
m
Generator — 1 ;
Vo— > fw(ge (29)
m
T i=1

Figure 2.10: WGAN loss function|ACBI17|

2.7 Face Landmark Detection

One of the popularly used face detector is the CNN based face detector from dlib. Dlib
is a toolkit for making the real world machine learning and data analysis applications
in C++. Although, it is written in C++, it has good, easy to use python bindings. The
facial landmark detection is generally used for this thesis.

This detector is based on the Histogram of oriented gradients and linear SVIM.
While the HOG+SVM based face detector works perfectly fine, there is also CNN based
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dlib face detector. The HOG based face detector in dlib is meant to be a good frontal face
detector. Meanwhile the CNN based detector is capable of detecting faces in almost all
angles. But CNN based detection is computationally expensive. Hence, for the purpose
of this thesis the HOG based detector is used because it serves the purpose quite well.
The image |Figure: shows an example of the dlib face detector (HOG+SVM based)
on a sample image from CelebA dataset. The Annotated Image gives the bounding box
for the face including the 68 coordinates for the facial landmarks that are marked by
red dots.

Real Image Real Image annotated
0 0+
25 1 25 1
50 A 30 4
75 - 75 -
100 100

175 175 +

200

200

Figure 2.11: Dlib face detector applied on an Image

2.8 3D model and UV mapping

One important part of the thesis is to fit the generated face textures on a 3D model
and determine what resolution of texture, fits best on the available 3D model. In order
to fit the 2D texture into a 3D model is called UV mapping[HLS07|. UV mapping is
the 3D modelling process of projecting a 2D image to a 3D model’s surface for texture
mapping. ‘U’ and 'V’ represents the axes of the 2D texture because 'X’, 'Y’ and 'Z’
are used to denote the coordinates of the 3D object. The figure [2.12] gives an overview
of the UV mapping concept. A UV map consists of the 3D model’s XY Z coordinates
flattened into 2D UV space.
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Figure 2.12: UV mapping overview

The figure gives a pictorical representation of the UV mapping concept.
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Figure 2.13: The application of a texture in the UV space related to the effect in 3D[HLSQT].

20



Related Work

3.1 Generative Adversarial Networks

In the year 2014, Ian J. Goodfellow, for the first time proposed a new framework for
estimating generative models via an adversarial process, in which the generative network
G and the discriminative network D is simultaneously trained. The proposed adversarial
model has a few advantages. Firstly Markov Chains are never needed, and only back-
propagation is used to obtain the gradients, no inference is needed during learning,
and moreover a wide variety of functions can be incorporated into the model. These
aforementioned advantages are primarily computational. There is also some statistical
advantage because the generator network is not directly updated with the data examples,
it is updated only with gradients flowing through the discriminator. The other advantage
of adversarial nets proposed by Goodfellow is that they can represent very sharp, even
degenerate distributions.
There are few other GAN architectures that needs to be mentioned.

Architecture Variant GANs

Many types of GAN variants have been proposed in the architecture, which is summa-
rized in figure . These variants have a specific task to perform like image to image
transfer, image super-resolution, image completion and text to image generation. The
architectures mentioned helps in improving the performance of GANs w.r.t to different
scenarios like image quality improvement, image variety improvement, stable training,
etc.

Fully Connected GANs: The original GAN paper|[GPAM™14| that has been men-
tioned above, uses fully connected layers for generator and discriminator. This archi-
tecture variant has been used to generate simple images of MNIST and CIFAR 10 and
Toronto Face Dataset. It has not shown good generalization performance for complex
image types.
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Laplacian Pyramid of Adversarial Networks (LAPGAN): LAPGAN
architecture had been proposed to generate high resolution images, from lower
resolution input. LAPGAN utilizes a cascade of CNNs within a Laplacian pyramid
framework to generate high quality images.

Deep Convolutional GAN (DCGAN): It is one of the most important milestones
in the field of GAN architectures. DCGAN|RMC] was the first architecture that applied
a deconvolutional neural network architecture for generator. The DCGAN utilize the
spatial up-sampling ability of the deconvolution operation for generator, which makes
generation of higher resolution images possible. The figure [3.1] shows the architecture of
the DCGAN. Some of the notable features of the DCGAN includes the use of transposed
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Figure 3.1: DCGAN generator. A 100 dimensional uniform distribution Z is projected to a
small spatial content convolutional representation with many feature maps. A series of four
fractionally-strided convolutions then convert this high level representation into a 64x64 pixel

image [RMC]

convolution for umsampling and downsampling, use of batch normalization that stabi-
lizes learning by normalizing input at each unit to have zero mean and unit variance
and use of ReLLU activation function in the generator and the use of Tanh function at
the output layer of the generator.

Progressive GAN (PROGAN)[KALL17]: This architecture involves the progres-
sive steps towards the expansion of network architecture. It uses the idea of progressive
neural networks. This architecture has the advantage of not forgetting and can take
advantage of the prior knowledge via lateral connections to previously learned features.
Training starts with the low resolution 4x4 pixels images. The generator and the dis-
criminator starts to grow with the training progressing. The progressive nature enables
more stable learning. Current state of the art GAN models are based on this architec-
ture, the most prominent example being the StyleGAN architecture[KLATS|, which is
the backbone of the thesis and has been describe in details in the Background chapter.
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BigGAN: BigGAN|[BDSI§| has also achieved state of the art results. The BigGAN
pulls together the recent best practises in training class-conditional images and scaling
up the batch size and model parameters. It has proved that increasing the batch size
and the complexity of the model can dramatically improve GAN’s performance.

Complexity and Mechanisms Quality and Diversity

E' Goodfellow et al.(Driginal GAN) Fully-connected network 2014 F~

s — g A
T =

[} - m
o 5 Cascade of CNN within 2 0 7
= @ Denton et al.[LAPGAN) Laplacian pyramid framework 2015 ! E
Zs = 2

) Radford et al.(DCGAN) Deconvolutional CNN 2016 ! o

|

Autoencoder architecture for
Berthelot et al,(BEGAN) e

Progressive growing neural

network
-

Karras et al.[PROGAN)

Han Zhang et al. (SAGAN) Self-Attention CNN
—

Orthogonal regularization to generator,
By using deeper SAGAN with larger

Brock et al (BigGAN) training batch size.
—g

Figure 3.2: Timeline of architecture-variant GANs. Complexity in blue stream refers to size
of the architecture and computational cost such as batch size. Mechanisms refer to the number
of types of models used in the architecture (e.g., BEGAN uses an autoencoder architecture for
its discriminator while a deconvolutional neural network is used for the generator. In this case,
two mechanisms are used)

3.2 Evaluating GAN output

As the output of GAN is an image, it is reasonable to judge how realistic the images
are. Substantial amount of work has been done in this field. Till date there is no overall
metric to compare all GANs, but there are a few main ones that have been used to
compare models with the same applications.

Image-to-image models have been evaluated using FCN (Fully-Convolutional Net-
work) score. This method uses a classifier to perform semantic segmentation on the
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output images, and then it is compared to a ground truth labelled image. For Image-to-
Image translation that performs photo-to-label translation (CycleGAN|ZPIELT]) metrics
such as per pizel accuracy, per class accuracy , and mean class Intersection-Quver-Union
(Class I0U) are commonly used.

In the case of conditional image synthesis, the two most commonly used metrics that
are used is Frechet Inception Distance (FID)[HRUT17| and Inception Score (IS)[BS1S].
The inception score is an objective metric used for evaluating the quality of generated
images. The inception score was introduced as an attempt to remove the subjective
human evaluation of images. The inception score leverages a pretrained deep neural
network for image classification to classify the generated images. Specifically the incep-
tion v3 model has been used. The probability of the generated image belonging to each
class is calculated. The predictions are then summarized into inception score. The score
represents two properties of the generated images, i.e. image quality and image diver-
sity. The range of inception score is [1,(number of classes supported by the classification
model)|]. The inception v3 model supports 1000 classes and hence IS ranges between
[1,1000]. The higher the inception score, the better is the model.

The Frechet Inception Distance or FID calculates the distance between feature vec-
tors calculated for generated and real images. The score represents how close two groups
are in terms of statistics on computer vision features that are obtained using the incep-
tion v3 model. The FID score is used for the purpose of this thesis and a short description
is provided in the Fwvaluation chapter.

3.3 Image Data Modification

Geometric and Photometric transformation

Two very basic augmentations that can be performed on an image is geometric and
photometric. Geometric transformation includes zooming, cropping, flipping, etc. And
photometric transformation includes altering RGB channels , gray scaling, colour jitter-
ing, contrast adjustment, etc. Wu et al. adopted a series of geometric and photometric
transformation to prevent overfittig.

Hair Style transfer

Kim et al. used DiscoGAN|KCK™17| to transform the hair colour, which was intro-
duced to discover cross-domain relations with unpaired data. The same was achieved by
StarGAN|CCK™ 17|, whereas it could perform multi-domain translations using a single
model.
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Input Black Hair Brown Hair

Figure 3.3: Hair style transfer[KCK*17]

Age Progression and Regression

The methods that have been traditionally used includes the prototypes based method
and model-based method. The prototype based method creates average faces for differ-
ent age groups, learns the shape and texture transformation between these groups, and
applies them to images for age transfer. The model based method constructs parametric
models of biological facial change with age, e.g. muscle, wrinkle, skin, etc. But these
models have high complexity and computational cost.

Recent works applied GANs with encoders for age transfer. The input images are
first encoded into latent vectors, it is then transformed in the latent space, and re-
constructed back into an image with different age. Palsson et al.[PATV1S8| proposed
three aging transfer models based on CycleGAN. Zhang et al.[ZSQ17] proposed a condi-
tional adversarial autoencoder (CAAE) for face age progression and regression. Zhao et
al.JZCPRO3| proposed a GAN-like Face Synthesis Subnet (FSN), that learns a synthesis
function that can achieve face rejuvenating and aging with photo-realistic and identity
preserving properties.

Disentangled Representation

Yujun et al.[SGTZ19] proposed an automatic face attribute modification method. The
system was based on latent SVM model that described the relations among facial fea-
tures, facial attributes and makeup attributes. Xi et al.[PYS*17] made the pose varia-
tion disentangled from identity representation by inputting a separate pose code to the
decoder, and then using the discriminator to validate the generated pose.

3.4 Face Texture Generation

Zhixin et al.[SSGT1§| disentangled the textures from the deformation of input images
by adopting the Intrinsic DAE (Deforming- Autoencoder) model. It transformed the
input image to 3 image properties namely shading, albedo and deformation. It then
combined the shading and albedo to generate texture image.

Kyle et al.JOLYT17] presents a novel method to animate a face from a single RGB
image from a video sequence. For the purpose of making the animations more realistic,
they needed the dynamic per frame textures to capture the subtle deformations and
wrinkles corresponding to the animated facial expressions. For this purpose they had
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proposed a novel framework that can generate realistic dynamic textures using a con-
ditional generative adversarial network to deduce precise deformations in textures such
as blinking, mouth open closed, etc.

Ron et al.[SSK18| presents a new approach to generate human faces. They achieved
it by constructing a dataset of facial 3D scans. They mapped the facial texture onto a
2D map by the alignment of facial geometries and using an universal parametrization.
Then GAN is used to generate more textures using the mapped textures as dataset.
The texture dataset formation steps include:

e Producing 3D facial landmark annotations on the scanned faces.

e Back-projecting the landmarks on a 3D mesh.

e Performing vertex to vertex correspondence between face template mesh and facial
scan.

e Once the template is aligned with the scan, the texture is transferred from the
scan to the template using ray casting technique in Blender.
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4.1 Dataset Preparation

4.1.1 CelebFaces Attributes Dataset (CelebA)

The facial images dataset that has been used for this thesis is CelebA dataset. Celeb-
Faces Attributes Dataset (CelebA) is a large-scale face attributes dataset with more
than 200K celebrity images, each with 40 attributes annotations. The images in this
dataset cover large pose variations and background clutter. CelebA has large diversities,
large quantities and rich annotations, that includes:

e 10,177 number identities.

e 202,599 face images.

e 5 landmark notations, 40 binary attributes annotations per image.

Eyeglasses
SRS Hat

S 4 S
4 ~‘If =1 :
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Fointy 4 Mustache
Nose \
Oval Face Smiling

Figure 4.1: CelebA dataset sample with a few annotations|LLWT15]|.
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Figure 4.2: Downloaded Texture [Gmb20)]

Figure 4.1] is a small portion of the dataset showing the different class of faces that
are available in the dataset. In the figure only 8 are shown, but there are 32 others that
includes bald, male, young, black hair, brown hair, etc. The resolution of the images
are 178x218. For the purpose of the thesis, the images had to be square in shape, which
means it has to be of equal height and width. All the images were converted to 512x512
resolution, because high resolution image generation is a prerequisite for the thesis, and
that is the only augmentation that is performed on the CelebA dataset for the thesis.

4.1.2 Texture Dataset

As the main purpose of the thesis is high quality texture generation, getting texture
data was also important. Texture dataset is not available commercially and it was a
difficult task to get the images. Only 860 texture images was downloaded for this thesis.
The downloaded textures were converted to 512x512 and 1024x1024 resolutions. An
example of the downloaded texture is given below:

As the number of images is only 860, it was important to perform different augmen-
tations in order to increase the dataset. All augmentations did not have satisfactory
outcomes after the completion of the training that is discussed in the Results and Dis-
cussion chapter. The different augmentations that has been performed to make the
textures fit for training are:

1. The black portions has been removed and images resized to 512x512 or 1024x1024
dimensions, according to the training needs.

Gaussian blurring of the images. The example has been shown below.

Adding Gaussian noise to the images.

Converting the image from RGB to HSV mode and then increasing the V channel.
Horizontally flipping the images.

Decreasing and increasing the contrast of the images.

Modifying the blue, green and red channel of the images.

The number of texture images that has been used without augmentation is 860

PN OO W
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Figure 4.3: Different types of augmentations that has been performed on the images

and with augmentation it is 1600.
Example of each kind of augmentation is shown in the figure 4.3

4.2 Training

The official tensorflow version of the StyleGAN published by Nvidia Corporation|[KLA18]|
is used for the thesis. The code was adjusted to suite the available hardware resources
and dataset. The training was performed for 13 days on 512x512 resolution images of
CelebA dataset. Two P6000 Nvidia Quadro GPUs were used for the training purpose.
All weights of the mapping network, generator and discrimiantor network and affine
transformation layers were initialized using N'(0, 1). The constant input of the synthesis
network is set to 1 and the biases and the noise scaling factor are set to 0. Adam
optimizer is used for optimization. The batch sizes are different for training different
resolution layers. The table gives the batch size information. The learning rate used
was 0.001. 260 epochs were used for training. With the progress of the training, different
models were saved for different time steps. Frechet Inception Distance, also known
as FID score, is used as an evaluation metric for the models. The model with the lowest
FID score that was achieved was 5.89, after which the training was stopped, because the
FID score had reached satisfactory level and the images were visually appealing. Hence
quantitatively and qualitatively it was justified to stop the training. The figure [4.4]
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shows the images generated by the StyleGAN after initial training on CelebA dataset.

Table 4.1: Batch size used for training different resolution layers.

| Resolution | 4x4 | 8x8 | 16x16 | 32x32 | 64x64 | 256x256 | 512x512 |
| Batch-size | 160 | 140 | 120 | 100 | 80 | 40 | 30 |

Figure 4.4: Generated images after initial training

The next phase of the training is training with the texture dataset with the augmen-
tation and without the augmentations. The evaluation regrading both the trainings is
discussed in the Results and Discussion chapter. The concept of transfer learning is
used in this context. Transfer learning is using an already trained model and retraining
it with a different relatable dataset. As texture and facial images are almost similar,
hence a model trained on facial images can be successfully retrained on textures also.
Transfer learning has several benefits that has made it particularly beneficial in this
scenario:

e A lot of data is usually needed to train the neural network which is not always
available, which is exactly the situation in this case. This is where transfer learning
acts as a saviour because not a lot of data is required for the retraining. With only
860 texture images it was possible to train the entire StyleGAN network, because
it was already trained with the huge CelebA dataset.

e The other advantage is, it provides better results in most cases.

e Last but not the least, it is not needed to train a network every time from scratch,
and hence as a consequence saves a lot of time.

The image below [Figure: shows the generated texture of 512x512 resolution, that
was trained with only 860 images of non-augmented textures.
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Figure 4.5: Generated texture images after training. Each texture in this collage is 512x512
resolution. The FID score achieved is 51.2264

4.2.1 Effect of image augmentation during training

Augmentation of images has a profound effect in reducing overfitting and better gen-
eralization, especially when the data is less. In case of images, significant research
has been made to show that image augmentation has helped in a better way to train
a model and have achieved significant good results than their without augmentation
counterpart[PW17]. Image augmentation involves horizontal and vertical flipping, ro-
tation, cropping, and some other types has been already mentioned in Texture Dataset
section above. Image augmentation may have positive impact on classification task,
because it prevents the model from overfitting, but in-case of generative models, aug-
mentation may not prove beneficial. The basic idea of a generative model is to mimic
the distribution of the dataset, and hence if the model is provided with a dataset that is
augmented or to be specific distorted images, then eventually the model will also learn
the distortion. The figure shows an augmented dataset.

The results that were obtained after the training with the augmented texture dataset
are shown in figure [4.7] From the figure it is clear from the qualitative point of view that
generated textures are not of desired quality. From the figure we can see that some of
the textures has a pink hue, some are more yellowish, some has very high contrast and
some has undesirable patches in the image. Hence all these undesired qualities render
the generated textures unrealistic and useless.
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Figure 4.6: Texture Dataset that is augmented. The augmentations that are done are chang-
ing the contrast, brightness, colour channel augmentations and adding different types of noise
like Gaussian and salt and pepper noise.

Hence it provides a conclusive proof that augmentation is not a good idea for gen-
erative models. After removing all type of augmentations and training with just non
augmented images, the model generated textures that are more realistic in nature and
without any unusual colour or contrast issues as shown in figure [4.5] Further assess-
ment for generated texture is mentioned in following Degree of Realism section and their
evaluation is mentioned in the Results and Discussion chapter.

4.3 Degree of Realism Assessment

One important aspect of the thesis is the degree of realism. It was important to verify
the sanctity of the generated images. FID score is one metric that has been used for
a long time. The FID score actually compares the statistics of the generated samples
to the real samples. But FID score is not the only one. For the purpose of this thesis
some other metrics is considered to verify the degree of realism of the generated images.
The other two metrics that are considered are Face Index|[ZCPRO3| and Intercanthal
Indez|[ZCPRO3|. Figure shows the different facial photometric points of a face.
This can be compared to the 68 facial landmark coordinates from the IBUG 300-W
dataset|CSP13].
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Figure 4.7: Generated textures when trained with augmented texture data. The generated

textures in this case are unrealistic. As evident from the image some textures have yellow, pink
tinge and some has high contrast, etc.
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Figure 4.8: Visualizing the 68 landmarks coordinates from the iBUG 300-W dataset|[CSP13].
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These landmarks can be used to calculate important parameters to assess the degree
of realism. Among them Face Index and Intrcanthal Index is chosen for the thesis.

e Face Index|ZCPRO3|: It is the ratio of the facial height(28-9) to the upper facial
width(1-17)|Figure: . As it is a ratio it does not have any units.

facial height (28 —9) - 100
upper facial width (1 — 17)

Face Index = (4.1)

e Intercanthal Index|[ZCPRO3]|: It is the ratio between the intercanthal width(40-43)
to the bioccular width(37-46). As it is also a ratio it does not have an index.

Intercanthal width (40 — 43) - 100

Intercanthal Index = 4.2
Bioccular width (37 — 46) (42)
Table 4.2: Face and Intercanthal Index from original medical paper|ZCPR03
‘ LV Classification ‘ Face Index Range ‘ Face Index Mean ‘ Intercanthal Index Mean ‘
Male ‘ Female ‘ Male ‘ Female Male ‘ Female
Narrow <79.90 <7790 | 7649 £ 2.82 | 75.39 £ 1.64 | 36.72 &+ 3.65 | 36.75 + 4.90
Medium 80-80.99 | 78-82.90 | 84.29+2.49 79.76+1.44 36.7243.65 36.7544.90
Wide >89 >83 91.99+2.42 | 84.934+1.97 | 36.724£3.65 | 36.75+4.90

Face and Intercanthal Index for different geometry of faces

The calculation for the Face Index and Intercanthal Index is achieved using the dlib
face detector that is shown in figure [£.9 The following steps are performed to calculate
the Degree of Realism for the faces generated using the StyleGAN model :
e Loading the image is the first step.
e Then the face detection algorithm is applied on the image to identify the face and
the 68 landmarks [Figure: [4.§].

e Those 68 landmarks or co-ordinates are stored in the form of a list, from which
the required co-ordinates are extracted to calculate the indices that are mentioned
above (Face and Intercanthal Index).

Real Image Real Image annotated

EEEduuy,

175
200

o 50 150

Figure 4.9: Visualizing the 68 landmarks coordinates from the iBUG 300-W dataset on the
facial image
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Table shows the results from the original paper[ZCPR03]. These values are taken
as reference to evaluate the degree of realism for the generated images as well as the
images from the dataset. After performing the experiments it is observed that the
results are quite satisfactory. From table it is evident that the Face Index and the
Intercanthal Index for CelebA dataset and the generated images are quite close to each
other which justifies the accuracy of the GAN model and also provides a conclusive
proof about the quality of generated faces. The graphical representation for the results
are given in the Results and Discussion Chapter.

Table 4.3: Degree of Realism for generated faces

| Face Index (Mean =+ std) | Intercanthal Index (Mean + std) |

‘ CelebA ‘ Generated ‘ CelebA ‘ Generated
Male 72.47 + 6.08 | 70.36 £ 4.50 | 44.04 + 2.39 | 44.06 + 2.14
Female | 68.91 4+ 5.36 | 67.09 & 3.84 | 43.15 £+ 2.17 | 43.33 £+ 1.83

Face and Intercanthal Index comparison between CelebA faces and generated faces for male
and female

The Degree of Realism assessment is also done for the generated texture. The com-
parison is made between the face index values of the generated textures and the face
index values for the downloaded textures that is used for the dataset. The table (4.4l
shows the face index values for the generated textures and the downloaded textures.
The values gives a conclusive proof that the GAN is able to generate similar quality
textures as the downloaded ones, which is absolutely desirable.

Table 4.4: Degree of Realism for generated textures

Face Index (Downloaded) Face Index (Generated)
Textures 100 £ 9.06 100.13 £ 5.85

Face Index values for generated and downloaded textures. From the table it is clear that the
model is able to generate similar quality textures as per the downloaded textures.

4.4 Modification of Generated Images (Faces and Tex-
tures)

Generating images is not always the end of the story. Conditional generation is an
important topic in present day’s research. In conditional GAN, as it has been shown in
the Background chapter, the dataset is composed of images along with their labels. But
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what if the labels are not known beforehand. In that case there should be some ways to
modify the images to ones needs, just like the task that can be performed with photoshop
software. Modifying images using machine learning techniques has huge potential and
hence it is explored for the purpose of this thesis with great detail.

4.4.1 Style mixing using the StyleGAN model

It is already mentioned in the Background chapter, that the StyleGAN architecture
makes it possible to control the image synthesis via scale specific modifications to the
styles. The mapping network and the affine transformations [Figure: can be viewed
as a way to draw samples for each style from a learned distribution, and then the
synthesis network can be viewed as a way to generate a novel image based on a collection
of styles. The effects of each style are localized in the network, i.e. modifying a specific
subset of the styles can be expected to affect only certain aspects of the image.

The reason for this localization is the AdalN operation [Eq: . The AdalN op-
eration first normalizes each channel to zero mean and unit variance and then applies
scales and biases based on the style. The new per channel statistics that is dictated
by the style, changes the relative importance of the features for the next convolution
operation, but are not dependent on the original statistics because of the normalization.
Hence it can be concluded that the style controls only one convolution layer before being
overridden by the next AdalN operation.

To further encourage the localization of styles, images are generated using 2 random
latent codes instead of one during training. To generate such an image the latent code
is changed from one to another at a randomly selected point in the synthesis network.
To be more specific, z1 and 22 are two latent codes from which w1 and w2 are generated
by passing through the mapping network and both are run through the entire synthesis
network [Figure: 2.9], and w2 is applied after the crossover point. Using this method,
the network can also be prevented from assuming that adjacent styles are correlated.

The block diagram below shows an overview of the style mixing method [Figure:
[1.10]. From the block diagram it can be seen that 21 is used for the first few convolutional
layers and 22 is used for the last few convolutional layers. The crossover point in the
diagram can be considered as 64x64 convolutional layer. The figure shows an
example of the style mixing method. The images are being generated using the model
that is self trained. Modifying textures using style mixing is shown in the Evaluation
chapter.

4.4.2 Modification using Regression

The purpose of this method is to make the latent space transparent. The basic generation
process involves the feeding of noise to the generator and then getting face as an output.
Hence, if it can be understood what the latent space represents, then the generation
process can be completely controlled. The features of a face are gender, hair colour, etc.
which are quite well represented in the CelebA dataset. Table [tab: represents a
small section. There are 40 such kinds of features mentioned in CelebA dataset. Here 1
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Figure 4.10: Style mixing block diagram

represents that the feature is present for that image and —1 represents that the feature
is not present for that particular image.

Table 4.5: CelebA facial attributes|LLWT1

‘ image id ‘ 5 o_Clock Shadow ‘ Attractive ‘ Bald ‘ Black Hair

000001.jpg 1 1] -1 1
000002.jpg 1 SR 1
000003.jpg 1 SR 1
000004.jpg 1 1] -1 1

Hence the purpose of this approach is to link the latent space with these 40 features.
The simple block diagram [Figure: [4.12] summarizes the entire approach.

5 —> Gender
G . % —Age
Latent Vector enerator ) )
=~ t+—Hair Style
Z Network & ° Y
B )
S > Hair colour

Link between the face attributes and latent vector

Figure 4.12: A simple block diagram that represents how the regression approach works.
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Figure 4.11: Implementation of style-mixing method where the new variations in images are
created by combining the features of the original images with the reference images.
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Challenges to the above approach:

e Firstly, how the features/labels can be obtained from generated images?
e Secondly, how the linking can be done between the feature vector and the latent
vector?

The solution to the first challenge is to train a separate feature extractor network.
The feature extractor network is basically a multi-label classifier model for discrete
labels. Given a dataset with real labels (like celebA), the network can be trained using
the Zyeq (image) and Y. (labels). The trained network can then be coupled with
a trained generator network to get the features of the generated images. The small
subsection below explains the face attribute predictor network that is used for this
thesis.
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Figure 4.13: Label Predictor network

The above figure [Figure: represents the face attribute predictor network. Transfer
learning concept is used. MobileNetV2 is used as the base model. Mathematically this
feature extractor can be written as y = F(x), where F is the feature extractor, y is
the feature vector and x is the generated image. Hence the workflow is to generate
Tgen = G(2) and then get y = F(x4,) and then link y to z. Here x4, is the generated
image and z is the noise vector that is given as input to the generator G.

After all the features are obtained, corresponding to the latent vectors, that were
passed through the generator, a regressor model y = A(z) is trained to uncover all the
feature axes for controlling the image generation process, which is the solution to the
second challenge. Here A is the linear regression function.

Steps involving the modification process

e Learning the distribution: This step is basically training a generator network.
For the purpose of this thesis StyleGAN architecture is used.

e Classification: This step involves the feature extractor. The feature extractor
that is shown above |Figure: [£.13], is trained for this thesis to extract the features
from the generated images. For that the network is trained using the CelebA
training datset. CelebA validation dataset is used for the validation. The training
details are in the evaluation section.

e Generation: Generate images by passing random latent vectors, and then use
the feature extractor network to get the features for the images.

e Correlation: Using a regression model to perform regression between the latent
vector and features. The regression slope becomes the feature axes.

e Exploration: Taking one latent vector, the vector is moved along the feature
axes, and examined how that affects the generated images.

Here correlation refers to the Pearson’s Correlation Coefficient. It is a test
statistics that measures the statistical relationship between two continuous variables.
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It is considered to be the one of the best methods of measuring association because it
is based on the method of covariance. It provides information about the magnitude of
the correlation or association. Pearson’s Correlation Coefficient (r) for continuous data
ranges from -1 to 1. The formula below represents the correlation coefficient r [Eq: [4.3]:

P2 (4.3)
V2PN W '

The diagram below [Figure: [4.14] shows the entire workflow for the modification
process using the regression technique.

N 2 :
- Generate Label/Attribute = Iﬁmear -
3 image using Predictor " Inpu?'g,;ressmn
% StyleGAN < Outpﬁt: Feature vector
3
Generate Change the Identify the Coefﬁcient
image using la;tent ;ector feature axis Matrlx
StyleGAN a (?ng eature (1x512) Dim:512x40
axis Vector

Figure 4.14: Workflow for modification of generated images using regression technique

The correlation matrix in the figure gives the regression slope. Each column in the
matrix represents each feature (like gender, age, etc) and the values of each column tells
the amount of that particular feature present in the 512D latent vector. One problem
with above mentioned process is the entanglement of features. It means that all the
features are correlated with one another. Hence, if one feature is changed, some other
features are getting changed. The solution to this problem is the disentanglement of
features. Disentanglement means to make the features uncorrelated to one another. To
make the features uncorrelated to one another the feature vectors are made orthogonal
to one another. When two vectors a and b are orthogonal to one another then their
dot product ||al|.||b||. cos @ = 0 because here # = 90°. When their dot product is 0 then
according to equation the numerator is 0 and hence correlation coefficient r is also
0.

4.5 Best Fit Texture Resolution

After generation and modification of textures, another important task is to wrap the
textures around the 3D face model. The figure shows the 3D model. For this thesis
the facial model is taken into consideration.
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Figure 4.15: 3D model on which the generated textures is wrapped|[Gmb20]

Every 3D model is associated with a UV map which is discussed in the Background
chapter. The figure shows the UV map corresponding to the facial 3D model.
It is important that the generated textures fits the UV map properly, otherwise the
generated faces (after wrapping the texture on 3D model) will be distorted, which is
undesirable. Hence, it is important to figure out whether the wrapping is dependent
on the resolution of the generated textures or not. Or is it the relative positions of the
facial features (eyes, nose, ears, etc.) which is more important than the resolution for
the texture to fit properly on the 3D model.

Figure 4.16: UV map of the facial 3D model|[Gmb20]

Steps involved in the process of determining the best fit texture dimension for the
given UV map are:

o After generating textures for a definite resolution, resize the textures for some
different resolutions.

e Write a Blender script to wrap the texture around the 3D model and check quali-
tatively whether the textures fit properly or not.

e Calculate the face index and intercanthal index to check whether they match the
values in table

e Compare the values for downloaded textures and generated textures (wrapping
both the downloaded and generated textures around the model).

e Evaluate the results and make an inference.
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e Repeat these steps for all the resolutions for both downloaded and generated tex-
tures.

The figure summarizes the steps mentioned above. The results and inferences are
detailed in the Results and Discussion chapter.

Resolutions
400x400
Resize 512x512
: Calculating the
Wrapping the g
Textures 512x512 550x550 textures it face index and
Downloaded and : :
( Blender intercanthal index of
Generated)
the wrapped textures.
600x400

600x600 Comparing the

face and intercanthal
index for the
downloaded and
generated textures.

Determining whether
resolution is important
or relative position of
the face features?

Figure 4.17: Block diagram for finding the best fit resolution of texture for the given UV
map

4.6 Rectifying Bad Fit Textures

It is observed that some of the generated textures when fitted on the 3D model have
a distorted appearance because the generated texture does not align to the UV map
[Figure: . As a matter of fact the textures in their raw form (when not wrapped
around the 3D model) does not show any distortions until they are being wrapped
around the 3D model. An example of such a distorted texture is shown below |[Figure:
4.18].

The solution to this problem is two-fold. Firstly, it is important to differentiate be-
tween good textures and bad textures. This is important because, determining a bad
texture after being wrapped on the 3D model is both time consuming and computation-
ally expensive. Secondly, implementing an efficient method to rectify the bad textures,
or to put it in a different way, aligning the textures to the UV map, so that the wrapped
model is not distorted.

To determine a good texture (that aligns to the UV map) and bad texture (that
does not align), the face landmarks are leveraged. The block diagram below |Figure:
4.19] gives an overview of the process that has been used to differentiate between a good
texture and bad texture.

42



4. Methodology

(b)

Figure 4.18: (a) Generated texture|[Gmb20]; (b)Distorted wrapped texture. The red circled
area shows the distortions[Gmb20)].

In case of « | Apply face landmark
no distortiéh| detection on the

generated good texture
|Take a generated texture| IWrap the texture on the 3D model
Fix the co-ordinates
of the eyes, lips and
nose for the good
texture for comparison
If Calculate the difference Take the co-ordinates of
(lips_disttnose_distteyes_dist)/3 between the fixed co-ordinats the eyes, the nose and
>30 and <100 th d .
an S and the co-ordinates of the the lips for the other
texture, else vice versa
lips, nose and eyes for each textures for comparison
individual generated texture

Figure 4.19: Block diagram to differentiate between good texture and bad texture. Here
lips_ dist, nose_ dist and eyes_ dist refers to the difference between the fixed co-ordinates and
the co-ordinates of the textures that is being compared.
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Steps involved in differentiating a good texture from a bad texture:

e Firstly around 1000 random textures are generated using the trained StyleGAN
architecture.

e The generated textures are then wrapped around the 3D face model using Blender.

e The good textures (that does not get distorted on wrapping ) are identified and
dlib’s face landmark detector is applied on the good textures.

e The co-ordinates of the lips, nose and eyes are fixed for comparison. From figure4.8
the landmarks for which the coordinates of the lips, nose and eyes are considered
are as follows:

— Lips: [59, 52, 55, 58]
— Left Eye: [37,40]; Right Eye: [43, 46]
— Nose: [28, 34, 32, 36]

e The average difference between the fixed co-ordinate values and co-ordinate values
for each individual texture is calculated. Here the co-ordinate values for lips, nose
and eyes are saved as 2D arrays. E.g. for lips the co-ordinate array is a 4x2 dimen-
sional array. Here Averagedif ference = (lips_dist +nose _dist + eyes dist)/3.
And lips _dist = lips array( fized) — lips array(texture under test). Similarly the
nose__dist and eyes dist are also calculated.

o After a few experiments it is observed that if the average difference is > 30 and
< 100 then the texture is a good one, else vice versa.

After differentiating between the good and bad texture, the second part of the so-
lution is to rectify the generated bad textures. For that the concept of Support Vector
Machine (SVM) is used. The block diagram |Figure: gives an overview of the
rectification process leveraging SVM classifier.

This method is based on the fact that for any binary attribute, in this case, good or
bad texture, there exists a hyperplane in the latent space (here latent space refers to the
512D latent vectors that are fed to the StyleGAN generator for the texture generation),
such that all the textures on one side of the hyperplane has the same attribute, which is
evident from the figure [£.20[(b), where the red dots are the bad textures and the green
dots are the good textures and the red line is the hyperplane that divides them.

The process of rectification involves firstly differentiating between a good and bad
texture and at the same time storing their latents (512D vector fed to the StyleGAN
generator) that generated those textures |Figure: [4.20(a)]. Then a SVM classifier is
trained on 4K good and 4K bad texture latents [Figure: [£.20(b)]. The hyperplane is
obtained on training the classifier. Given a hyperplane with unit normal vector n € R¢,
the distance from a sample z to the hyperplane is defined as,

d(n,z) =n"z (4.4)

here d(,) can be both positive and negative. When z is moved towards and across the
hyperplane, the distance and the semantic score (a texture being good or bad) changes.
When the distance changes its numeric sign, i.e. it crosses the hyperplane, the semantic
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attribute reverses i.e. the bad texture becomes a good texture. According to the above
explanation, it is evident that to manipulate the attribute of a synthesized image, it can
be done by changing the latent vector using the formula,

Znew = Rold T+ .1 (45)

where 2,., is the new latent vector, z,4 is original latent vector, n is the unit vector
perpendicular to the hyperplane, and « is the step length in the positive or negative
direction [Figure: [£.20[c)]. Once a new z,, is obtained, it can be determined using
the classifier whether the new latent vector lies on the positive or negative side of the
hyperplane, and once the latent vector is on the positive side, the texture is generated
using the latent vector and it can be observed that it is no longer distorted when wrapped
on the 3D model. The justification of the mentioned method is shown in the Results
and Discussion chapter.
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Figure 4.20: Process to rectify generated bad textures leveraging SVM classification tech-
nique.
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Results and Discussion

The purpose of this chapter is to put all the results of the experiments that has been
performed throughout the thesis in one place and making inferences from them.

5.1 Training of the StyleGAN architecture

This section contains the evaluation for the training progress of the StyleGAN model
and the evaluation of the realism of the generated images.

5.1.1 Evaluating Training progress using FID score

The basic metric that is used to test the accuracy of the architecture during training is
the FID ScorelHRU™17|. The FID Score is an improvement to the Inception Score|[BS1§],
that actually compares the statistics of the generated samples to the original samples.
For FID the Inception network[SLJ™14] is used to extract features form an intermediate
layer. Then the data distribution is modelled using multivariate Gaussian distribution
using mean g and covariance Y. The FID between the real images x and generated
images is computed as:

FID(r,6) = lls — ol + (3 + 3 2030 37)0) (1)

FID is more robust to noise and better measurement for image diversity. The lower the
FID score, the better is the result. Ideally the FID score ranges between [0, 00]. The
figure [Figure: shows the initial training progress on CelebA dataset w.r.t the FID
metric. The lowest FID score achieved for 512x512 resolution images is 5.89.
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Figure 5.1: Training progress for StyleGAN architecture. From the figure it is evident that
FID score decreases as number of epochs increases. The lowest FID score obtained is 5.8928
and the images are 512x512 resolution.

5.1.2 Degree of Realism for generated faces

In this section the degree of realism of the generated faces are being tested using two
other metrics namely the intercanthal and face index that are already explained in the
Methodology chapter under section Degree of Realism Assessment [Section: . The
evaluation is made by comparing the face and intercanthal index for CelebA dataset
faces, that is used for the training and the generated images, after training the model
for 260 epochs (11days). As mentioned earlier the generated images are of 512x512 res-
olution and the FID score obtained by the latest model is 5.89 which is quite impressive.
The official paper achieved a FID of 5.06 on 1024x1024 resolution. But to justify for a
lower FID, the available resources for the thesis was not up to the mark as mentioned
in the official paper[KLATS].

The figures below [Figure: shows the intercanthal and face index distribution
for CelebA and generated faces.

0.1
:% 81072+ —— CelebA male faces
,"8 —— Generated male faces
£6-1072 —— CelebA female faces
g generated female faces
N 4.1072
e (
52.102
z /

04 =
T T T T
60 70 80 90
Face Index

Figure 5.2: Face Index comparison between generated and CelebA faces for female and male.
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The following inferences can be made from the figure:

e The distributions are quite similar to each other which means that the generated
faces have similar features like the CelebA faces.

e For face indices in figure [5.2] it is evident that the distribution for the generated
faces and the faces from the CelebA dataset are almost similar to each other
proving the fact that the generated faces are similar in quality to the CelebA
faces.

e The same scenario can be observed also for intercanthal index. From table [4.2]
medically the range should be between 32 and 42. From table [£.3] it is evident
that both CelebA and generated intercanthal indices are quite close to the real
figures and also to each other.

e Hence it can be concluded that the generated images are up to the mark and hence
the corresponding model could be successfully used for further experiments.

. 0.2
:'?e —— CelebA male faces
< 0.15 7 —— Generated male faces
7, —— CelebA female faces
g 0.1 1 generated female faces
N
=
£5-1072
Z.

O 1 _—

T T T T T T T
38 40 42 44 46 48 50
Intercanthal Index

Figure 5.3: Intercanthal index comparison between CelebA and generated faces for male and
female.
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(a) Face Index < 60 (b) Face Index > 60&<80  (c) Face Index > 80 | (a) Face Index < 60  (b) Face Index > 60&<80 (c) Face Index > 80

Figure 5.4: Comparison of face index values for male and female faces
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5.2 Variational Analysis

The next most important part of the evaluation is the variational analysis. There is a
concept called Mode Collapse, that actually refers to the variation part. Mode collapse
refers to the situation when the GAN starts generating similar kind of images. That
is something which is not desirable. Hence to quantitatively analyse the variation part
this section is included.

The CelebA dataset comes with a label. csv file]LLWT15|, that contains 40 labels that
corresponds to each image in the dataset [tab: . Hence a good way to analyse the
variation is to check whether or not the generated images actually has those features.

For that reason a face attribute predictor network is trained that would tell what fea-
tures are actually present in an image. The face attribute predictor network is explained
in details in the Methodology chapter [Section: .

To check how accurately the face attribute predictor is able to predict the features a
simple approach has been taken. Features w.r.t 10K images are taken from the CelebA
dataset. Same 10K images were passed through face attribute predictor and the features
that were obtained from the network were matched with original labels to find how
accurate is the predictor network.

Match the features from
the dataset with the predicted
features

Features

Label
Predictor

Features

Figure 5.5: Block diagram to find the accuracy of the face attribute predictor network

The accuracy is determined using the ROC (Receiver Operating Characteristics)
curve. The ROC curve is created by plotting the True Positive Rate (TPR)[Eq:
against the False Posetive Rate (FPR)[Eq: [p.3]. The TPR is also known as sensitivity,
in terms of machine learning.

T PR/sensitivity = True Positive/(True Positive + False Negative) (5.2)

FPR = False Positive/(True Negative + False Positive) (5.3)
Below is an image |[Figure: [5.6] of the ROC curve plot for male/female classification

made by the face attribute predictor network. From the figure it is evident that the
network can identify efficiently between male and female with 98% accuracy.
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Receiver operating characteristic for gender identification
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Figure 5.6: ROC curve for gender identification by the face attribute predictor network

Next, it is important to determine the variations in the Generated images. It is
observed that the trained StyleGAN model is able to generate images with all kinds of
labels that are present in the CelebA dataset. This is a good sign because variation is
one of the most important thing that this thesis is aimed at. These experiments that
are mentioned above proves that the model does not suffer from mode collapse. To
determine the variations the face attribute predictor is used to predict the attributes of
the generated images.

The following figure [Figure: [5.7] shows the variations in the images. E.g. Figure
tells that black hair females are present in almost equal proportions in both CelebA
and generated images, i.e around 18%. Similarly face with and without beard are also
present in almost equal amounts in both the sets of images.

5.3 Finetuning with Texture

After training on the CelebA dataset and assuring that the trained StyleGAN on CelebA
can generate diverse and realistic images, the next step was to train the model to generate
textures. For textures there were only 860 images to train on and hence the concept
of transfer learning was considered, where the model was 1st trained on CelebA images
where dataset is not an issue and then trained on texture dataset, where the dataset
is too limited. It is already shown in Methodology chapter [Section: that image
augmentation is definitely not a solution to increase the number of images because that
gives undesirable texture quality like in figure 4.7 Hence training the network with
textures was a little tricky. The main hyperparameter that was considered for changing
was the learning rate for both the generator and the discriminator network. Ideally,
according to the official paper, the learning rate for both the networks is 0.001. In case
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Figure 5.7: Variations present in the generated images and comparing their corresponding
percentage with the CelebA dataset. The results have been obtained after testing on 1000
images from both CelebA and generated images. Hence it may not be exact but it gives a clear
picture about the different variations present. The gray bar represents percentage of generated
images and the green bar represents celebA images.

of textures that proved to be too high. Hence the learning rate was decreased step by

step to get desirable texture quality.
Another comparison is made in this section. Textures are generated with the best

model that is mentioned in the official paper[KLA1S| and textures are also generated
using the model that is self trained using the CelebA dataset. The table below [tab:

gives an overview of the training process for the textures.

Table 5.1: Training details of the StyleGAN model for Textures

Model Number FID Score | Learning Dataset
Rate
11642 5.89 0.001 | CelebA
11672 49.05 0.001 | Textures
11702 41.66 0.0001 | Textures
11942 97.99 0.0001 | Textures
12242 105.12 0.0001 | Textures

From the table it is evident that the best model 11702 has the lowest FID score of
41 and beyond that the FID score increases even though the learning rate is decreased.
The quality of texture that is obtained with this model is quite satisfactory. The image
below shows the generated images using the self trained StyleGAN model.
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Figure 5.8: Textures generated using StyleGAN model 11702. None of the textures in the
dataset is augmented

The table below [tab: shows the training details for the StyleGAN model that
is provided by Nvidia that is trained on CelebA dataset.

Table 5.2: Training details for the best model provided by Nvidia. The starting model number

is imaginary and it has nothing to do with the training process. The subsequent models are
saved after 20 epochs

Model FID Score | Learning | Dataset
Number Rate
14382 94.27 0.0001 | Textures
14402 70.07 0.00002 | Textures
14422 48.09 0.00002 | Textures

From the above table [tab: it is evident that the best model is 14422. The
learning rate for the case of the best model was decreased further and beyond the model
14422 it was observed that the FID score increases and hence is excluded from the table.

The image below shows the textures generated by the best model.
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Figure 5.9: Textures generated using StyleGAN model 14422. None of the textures in the
dataset has been augmented

As it is evident from both the training details in table[5.1]and [5.2] that the FID scores
differs a little, but quality wise there is no such difference. This is also justified using
the face index parameter. The face indices of the textures obtained by both the models
are almost the same. Hence for the purpose of the thesis, the model 11702, which is
self trained, is used for further experiments. The face index for the generated and the
downloaded textures are shown in table [4.4]

5.4 Modification of Generated Textures

After successful random generation of textures, the next important task is the modifi-
cation of the textures.

5.4.1 Style mixing implementation for textures

The first method that is implemented is the Style mixing method which is explained
in the Methodology [Section: 4.4.1] chapter. The figure below [Figure: [5.10| shows the
style mixing method implemented using textures.
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Figure 5.10: Style mixing implementation using textures

In the above figure, the 1st 3 rows, the images inside the yellow border, gives the
result of copying the styles from source B corresponding to coarse spatial resolutions
(42-8?) that brings high level aspects such as pose, hair style, a face shape from source
B, while all colours and finer facial features represents source A. Similarly copying the
styles from the middle resolutions (16%-322) from B, small scale features like hair style,
eye open/close, are inherited from B, whereas higher level features like face shape, pose,
etc are preserved from A. The last row represents copying fine styles (642-512%) from B
that brings finer changes like colour scheme and micro-structures.

This method has already been implemented in the official StyleGAN paper[KLA1S]
using face images. For the purpose of the thesis the same method is implemented using
the trained model for textures. It can be concluded that the number of variations
that can be achieved using this method is commendable. It is evident from the figure
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Figure 5.11: Feature entanglement representation using 5 features.

that on increasing the number of reference images the number of variations can also be
increased. E.g. here with 5 reference images, 5 variations could be created. In figure
30 images are created from 11 images which is almost 3 times and all are different
from each other.

Even in this method it is not possible to exclusively change each and every feature.
The next method has made it possible to identify the features and modify accordingly.

5.4.2 Modification of Images using Regression Analysis

Modification of images using regression method is explained in the Methodology chapter
[Section: . Using this method it is possible to identify the features individually and
modify them accordingly. The most important part of the regression technique is the
correlation matrix. The correlation matrix tells how the different facial features are
interrelated by computing the correlation coefficient between the different features. In
the regression technique selective modification is performed. Theoretically if 5 features
are considered as shown in figure [5.11] then the number of variations that could be
possible using this technique is 5! = 120 variations. Hence, it is evident that the number
of variations that could be achieved is commendable.

Application of regression technique

First, the experiments are performed on faces. Two features are considered to perform
the experiments and for the correlation matrix 5 best predicted features are considered.
Figure: shows the entangled correlation matrix.

From the correlation matrix[5.11]it is evident that the features smiling and eyeglasses
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have an inverse relationship. Similarly age (young) and gender also have an inverse
relationship. Hence changing either of the features will affect the other features also. The
image [5.12] shows the entanglement property. On trying to reduce the smile property,
eyeglasses starts appearing. In addition to that some other features have also changed
a little bit, as it is already shown that the features are entangled.

Figure 5.12: (Left to right)Feature entanglement representation. On trying to reduce the
Smile property, Fyeglasses starts appearing. 30 intermediate images have been generated, but
not all the intermediate stages have been shown to keep it clean.

Similarly age and gender are also entangled. The image [5.13] shows that trying to
change the age, the gender of the subject changes.

Figure 5.13: (Left to right)Feature entanglement representation. On trying to increase the
Age property, Gender changes. 30 intermediate images were generated, but not all the inter-
mediate stages are shown to keep it clean.

As it is already discussed in the Methodology chapter [Section: , to reduce the
entanglement, the features have to be made orthogonal to each other. This means that
the feature vectors of the regression coefficient matrix have to be made orthogonal to
each other, so that the correlation coefficient is 0.

The figure demonstrates the outcome of making features orthogonal to each
other. In figure smiling and eyeglasses are made orthogonal to each other and hence
it can be observed that, changing the smile attribute does not change anything w.r.t
the eyeglasses attribute. It has to be kept in mind that, only these two attributes are
orthogonal but these attributes are still correlated to the other attributes and hence
changing smile will affect the other features except eyeglasses.
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Figure 5.14: (Left to right)Feature disentanglement representation. On trying to reduce the
Smile property, Eyeglasses does not change.lt is evident that some other features like dress,
background, changes a little bit as they are still entangled. 30 intermediate images have been
generated, but not all the intermediate stages are shown to keep it clean.

Similarly the young and gender attribute have been made orthogonal to each other
and consequently changing the age, doesn’t change the gender. The figure[5.15|represents
that.

Figure 5.15: (Left to right)Feature disentanglement representation. On trying to reduce
the Age property, Gender does not change. It is evident that some other features like dress,
background, hair style changes a little bit as they are still entangled. 30 intermediate images
have been generated, but not all the intermediate stages are shown to keep it clean.

After testing on the faces, the next set of tests are conducted on textures. Similar
to faces, for textures also the correlation matrix is also plotted.

From the figure [5.10] it is evident that gender and beard has a strong negative corre-
lation. Which means if we try to change the beard attribute, e.g. reducing the amount
of beard, the gender will also change with that. The next figure [figure: is an
example of such a transformation.

Figure 5.17: (Left to right)Feature entanglement representation. On trying to reduce the
Beard property, Gender starts changing. 30 intermediate images have been generated, but not
all the intermediate stages are shown to keep it clean.
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Figure 5.16: Correlation Matrix w.r.t 5 best features that can be predicted by the Label
Predictor w.r.t the textures.

Figure 5.18: (Left to right) Feature entanglement representation. On trying to increase the
Beard property, Gender starts changing. 30 intermediate images have been generated, but not
all the intermediate stages have been shown to keep it clean.

From the figure it is evident that from left to right, the subject changes to a
more feminine looking subject which is not desirable. The vice versa can be observed for
the figure [5.18] where on trying to increase the beard the subject changes from female
to male.

It can be also observed from figure that beard and young has a positive correla-
tion, which means increasing the beard should also increase the age of the subject. The
figure |5.19| represents such a transformation.
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Figure 5.19: (Left to right) Feature entanglement representation. On trying to increase the
Beard property, Age starts increasing. 30 intermediate images have been generated, but not
all the intermediate stages are shown to keep it clean.

To avoid the entanglement, first the beard and age is made orthogonal to each other.
The correlation matrix obtained after the orthogonalization is shown in the figure [5.20
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Figure 5.20: Beard and Young made orthogonal to each other. The 2 black boxes are gray
in colour which means that the correlation is 0 between these 2 attributes

The figure [5.21] below shows the disentanglement property between age and beard.
When the beard property is increased the subject’s age does not increases. Here it
should be noted that in CelebA there is only 2 distinctions w.r.t age, i.e young and
old. Hence the face on the extreme right of figure [5.21] can be considered to be a young
subject.

Next the Beard and Gender is made orthogonal to each other. The figure |5.22(a)|
shows the orthogonalized correlation matrix and figure b) shows a example of the
disentanglement.
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Figure 5.21: (Left to right)Feature disentanglement representation. On trying to increase
the Beard property, Young doesn’t change. This means the age of the subject dos not change.
30 intermediate images have been generated, but not all the intermediate stages are shown to
keep it clean.
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Figure 5.22: Beard and gender disentangled. (a) Corelation matrix showing the disentangle-
ment; (b)(Top to bottom) Faces showing the disentanglement between beard and gender.

5.5 Determining the best fit texture for the 3D face
model

The steps to determine the best fit resolution is already mentioned in the Methodology
chapter [Section: W.5]. The figure shows a generated texture wrapped on the
3D model and the face detection algorithm applied on it to calculate the face and
intercanthal index.
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Figure 5.23: Generated texture wrapped on a 3D model and face detection algorithm applied
on it.

The tables 5.3l and [5.4] shows the mean face and intercanthal indices for different
resolutions of the textures wrapped on the 3D model.

Table 5.3: Mean face index for different resolutions of downloaded and generated textures
wrapped on the 3D face model.

‘ Resolution ‘ Face Index (Mean + Standard Deviation) ‘

‘ ‘ Downloaded Texture ‘ Generated Texture ‘

400x400 92.32+ 10.97 91.14+ 26.52
012x512 93.23£ 5.88 96.784 4.46
550x550 93.224+ 5.57 97.02% 3.86
600x400 93.44+ 5.77 96.80+ 4.26
600x500 93+ 5.67 96.75+ 4.27
600x600 93.68E 5.68 96.68+ 4.61

Table 5.4: Mean intercanthal index for different resolutions of downloaded and generated
textures wrapped on the 3D face model.

‘ Resolution ‘ Intercanthal Index (Mean + Standard Deviation) ‘

‘ ‘ Downloaded Texture ‘ Generated Texture ‘

400x400 40.74+ 4.89 39.15£7.94
512x512 41.294 2.66 40.21+ 2.25
550x550 41.29£ 2.64 40.24+ 2.34
600x400 41.12+ 2.63 40.4142.02
600x500 41.1842.56 40.31£2.09
600x600 41.20+£2.60 40.3642.15

It is evident from the tables that all the resolutions have almost similar values for
both the downloaded and generated textures. Figure [5.24(a) and |5.24{(b) shows the
distribution for face index and intercanthal index for different resolutions and it is evident
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Figure 5.24: Face and Intercanthal Index plots for diferent resolutions of textures. The legend
represents different resolutions.

that the indices are almost equal to each other and figure [5.25| shows the textures for
different values of face indices. Hence it can be inferred that the UV map fitting is not
dependent on the resolution of the textures. If that would have been the case, then the
indices would not have been the same for all the resolutions. Hence, it can be inferred
that the relative position of the nose, ears, eyes and lips in the texture with respect to
the available 3D model is important.

Last but not the least it is important to justify that the relative position of the
features of the face is important to fit the texture properly on the UV map, and not the
resolution. The figure gives a clear picture of the statement made above.

/

(a) Face Index <95 (b) Face Index > 95&<100 (b) Face Index > 100

Figure 5.25: Face textures for different face indices
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Figure 5.26: Comparison between fitting a good texture and a bad texture on the given UV
map. (The textures are generated)

It is evident from figure that in spite of the resolution, the good quality texture
on the left, fits perfectly on the model, whereas the bad quality texture, on the right
side, when wrapped around the 3D model, has a distorted appearance, irrespective
of the resolution. When face detection algorithm is applied on it, the algorithm can
successfully identify the face for both the cases. But if a closer look is taken |Figure:
5.27|, it can be observed that the 68 face landmarks can be properly identified in case of
the good texture, but not for the bad texture, which also justifies that the facial features
like the lips, eyes, etc are not in position w.r.t the UV map.

Figure 5.27: Face detector applied on generated textures.(Left) is a bad quality texture,
(right)is a good quality texture. The red encircled area on the left image shows the failure of
the face detector to detect the lips and the nose properly.
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5.6 Rectification of distorted texture

The process of rectifying bad fit textures is already explained in details in section [4.6]
Here a justification is provided in order to prove how appropriate the method is and
how well it works. Here both the scenarios of positive a and negative o values is shown
in order to establish what is the consequence of moving a bad texture towards the
hyperplane (when « is positive) and away from the hyperplane (when « is negative).
The figure shows how the textures get rectified when the latent vector z is changed
based on equation [4.5] Here the value of v is 4-0.1. The z is changed for different values

of a like 3« [Figure: [5.28(b)], 5av [Figure: [5.28|(c)|, 9« [Figure: [5.28(d)| and 13« [Figure:
5.2§(e)|. Figure [5.2§8](a) is the original distorted texture. Considering the hyperplane

(a) (b) (© (d) (€)

Figure 5.28: (Left to right) Rectification of distorted texture leveraging SVM concept. The
red circled areas shows the distortion and how the rectification process minimizes the distortion.

to be at the origin, table [5.5 shows the distance between the hyperplane and the latent
vector z which is used to generate the texture. It is evident that originally the texture
lies on the negative side of the hyperplane and as it is moved towards the hyperplane
following the equation the distance |Eq: from the hyperplane reduces and
consequently distortion also reduces. As the distance becomes positive at i = 9, i.e.
a step length of 0.9 is considered, the semantic attribute of the texture reverses which
means it becomes a good texture because finally the latent vector z is now on the positive
side of the hyperplane.

Table 5.5: Change in distance of latent vector z [Eq: from the hyperplane for different
multiples of +«. i here is 0,3,5,9 and 13

| (x=0.1)*i | 0 03 05 09 013

Distance from the hy- | -0.59 -0.29 -0.09 0.1 0.3
perplane (d)

Similar to positive «, experiments are also performed using negative values of « to
show that farther the texture is from the hyperplane the more distorted it appears. As a
consequence it also justifies that the method of SVM is feasible and works as expected.

The figure [5.29) shows how the textures get rectified when the latent vector z is
changed based on equation [£.5] Here the value of « is —0.1. The z is changed for
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different values of « like 3« [Figure: [5.29(b)], 5 [Figure: ¢)|, 9a [Figure: [5.29(d)]
and 13« [Figure: [5.29(e)]. Figure[5.29(a) is the original distorted texture.

(a) (b) © (Y (©

Figure 5.29: (Left to right) Distortion of distorted texture leveraging SVM concept. The red
circled areas shows the distortion and how the face gets more distorted as the texture is moved
further away from the hyperplane.

Table [5.6] shows that as the latent z is moved further away from the hyperplane by
considering « to be negative, the distance increases more towards the negative direction
and consequently the texture becomes more distorted which is evident from the figure

.29

Table 5.6: Change in distance of latent vector z [Eq: from the hyperplane for different
multiples of —a. i here is 0,3,5,9 and 13

| (x=-0.1)*i | 0 03 05 09 013

Distance from the hy- | -0.59 -0.89 -1.09 -1.29 -1.49
perplane (d)
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6.1 Conclusion

In this thesis it was shown how the state of the art StyleGAN architecture could be used
for the generation of high quality realistic textures. It was also shown how variations
could be achieved and how the proper fitting of the textures could be automated. It
starts with the leveraging of the StyleGAN architecture to generate 2D face textures,
which is technically a more efficient way than the already existing methods mentioned in
the Related Work chapter. A conclusive proof was also shown that augmenting texture
data to train StyleGAN architecture might not be a good idea. Two new metrics were
introduced in this thesis namely the face index and intercanthal index that can be used
to assess the degree of realism of generated faces or textures. These two metrics are
geometrically more informative because they take into consideration the geometry of
the face and will provide a more intuitive understanding of the quality of the generated
faces and textures apart from the FID score.

After generation the topic of modification of textures was also dealt with, in this
thesis. It was shown how the already existing method of style-mixing can be used to
efficiently modify the generated textures, the same way as it can be done for faces.
To have a more controlled modification process an efficient technique, the regression
technique, that actually helps in exploring the latent space of the GAN, was discussed
in this thesis. After generation and modification the next important topic that was
discussed was the fitting of the 2D texture on the 3D model. Blender has been used to
fit the textures to the 3D model i.e. the process of UV mapping has been done using
Blender. It was shown through extensive experiments that the proper fitting of a 2D
texture onto a 3D model is independent of the resolution of the texture. It depends on
the relative positions of the eyes, nose, ears and lips with respect to the face and on the
geometry of the 3D model that is available. Through extensive experimentation it was
shown how support vector machine (SVM) can be leveraged to rectify those textures
that appear distorted after wrapping them on the 3D model. It was also shown through
experiments about how to identify a possible bad texture that will appear distorted post
wrapping, before actually fitting the texture onto the 3D model.
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6.2 Future Work

As a part of the future work, the first and the foremost thing that could be done is
to leverage the GAN architecture to generate textures for the other parts of the body
and try to optimize the fitting process and in that way an entire 3D model could be
generated and with just one 3D model we can generate as many textures as we want
and we can have different 3D models.

Another important topic would be to generate face textures based on some predefined
criteria. Until now we have been modifying the images after they are being produced
but an important topic for research will be to find an optimal network that would
generate a latent vector (512D), that would be fed to the StyleGAN generator, from
a criteria vector similar to the annotations that we find in the CelebA dataset. In
that way we can generate textures or faces with the required features that we want.
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